

Global Biochar C-Sink certification

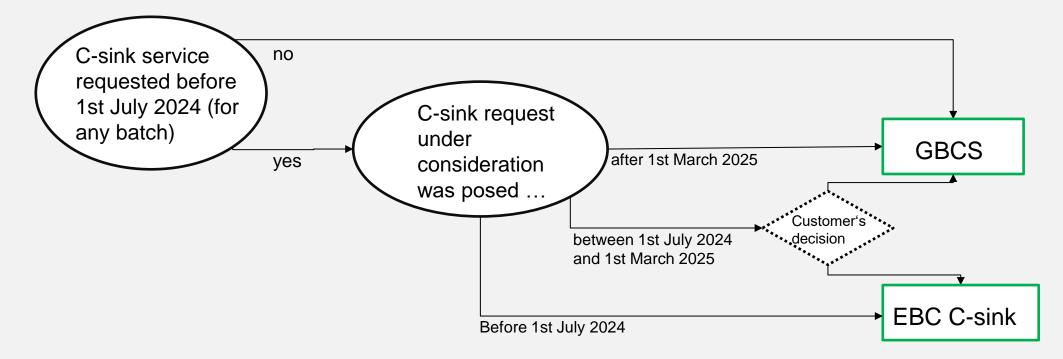
Global Biochar C-sink certification

510

3

Persistence: 2023-2122 (100 years)

Product: Certificate in Global C-Sink Registry GLOBAL C-SINK Biochar <a>Realised Issue date: 02-05-2023 [訳] VIEW QR CODE Biochar Stock ID: 1526 Amount CO₂eq Amount C Emission backpack Standard PERSISTENCE CURVE Interval: 1 year V 44.04 t CO₂eq 12 t C Global Biochar C-Sink Compensated Total: 45.00 t CO₂eq Available: 44.04 t CO₂eq Retired: 0.96 t CO2eq 45 40 The C-Sink Registry offers... 35 30 ... a visualization of C-Sinks resp. retirements 25 20 Ø ... a visualization of the persistence curve 15 10 +depending on the matrix and product 5 2052 Retired 0,96 t CO₂eq for 100 years


- ... a status about the emission backpack
- ... public documents

Transition from EBC C-Sink to Global Biochar C-Sink

Valid as of 1st July 2024

Transition period until 1st March 2025 for already certified companies

Transition from EBC C-Sink to Global Biochar C-Sink

What stays the same?

- General logic and approach
- Annual on-site visits
- EBC/WBC certification as a prerequisite and batch-based C-sink potential
- Restrictive Monitoring and checking of all emissions
- On-site check of C-Sink calculation

Process:

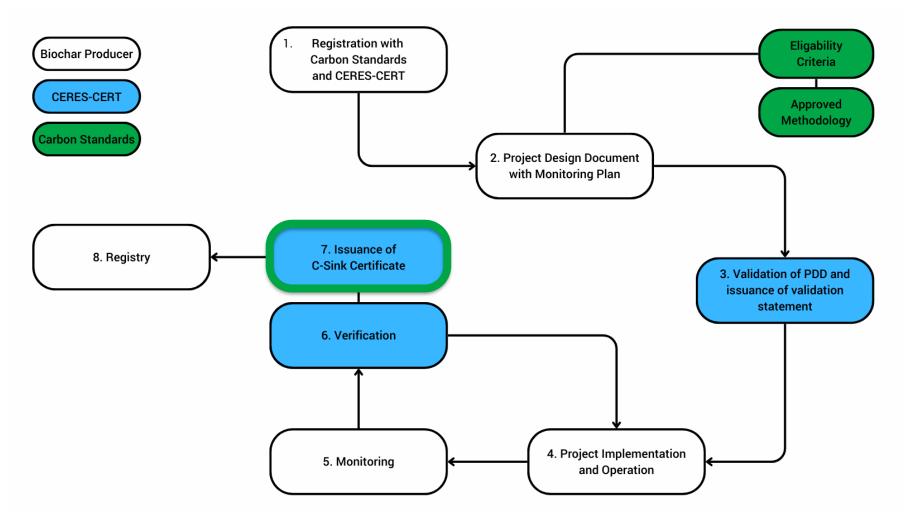
- Public Project Documentation (<u>p.56, point 14</u>)
- Cradle to grave emission documentation (p.48, 10)
 - Application matrix positive list
 - Explicit mentioning of processor registration (p.49, 10.2)
- Energy Efficiency limit (<u>p.42, 8.2</u>)
- Report Carbon Efficiency (p.42, 8.1)

Product:

- Product definition (<u>p. 11, 2 & p.53, 12</u>)
 - Geological C-sink, 1000+ years: C-Sink_1000+
 - Temporary C-sink, up to 100 years: C-Sink_xx
- Threshold value for diffuse C-sinks: 1tCO2e (p.51, 11.2)
- Emission portfolios (<u>ctrl-f portfolio</u>)
- Methane offset with temporary C-sinks (p.20, 4.3)
- Definition for allocation/pro-rata accounting (p.22, 4.5)

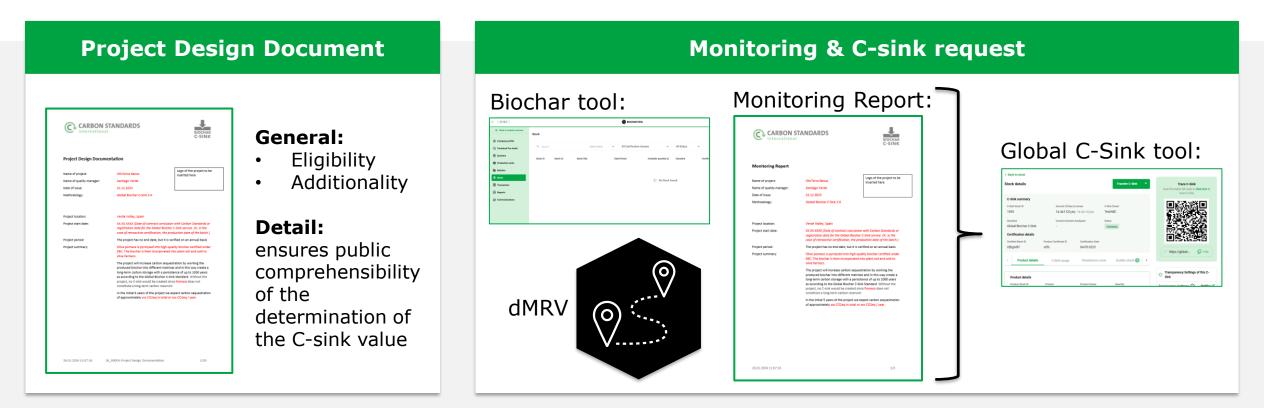
Process:

- Public Project Documentation (p.56, point 14)
- Cradle to grave emission documentation (p.48, 10)
 - o Application matrix positive list
 - o Explicit mentioning of processor registration (p.49, 10.2)
- Energy Efficiency limit (p.42, 8.2)
- Report Carbon Efficiency (p.42, 8.1)



Relation between EBC/WBC and C-Sink – Certification Process

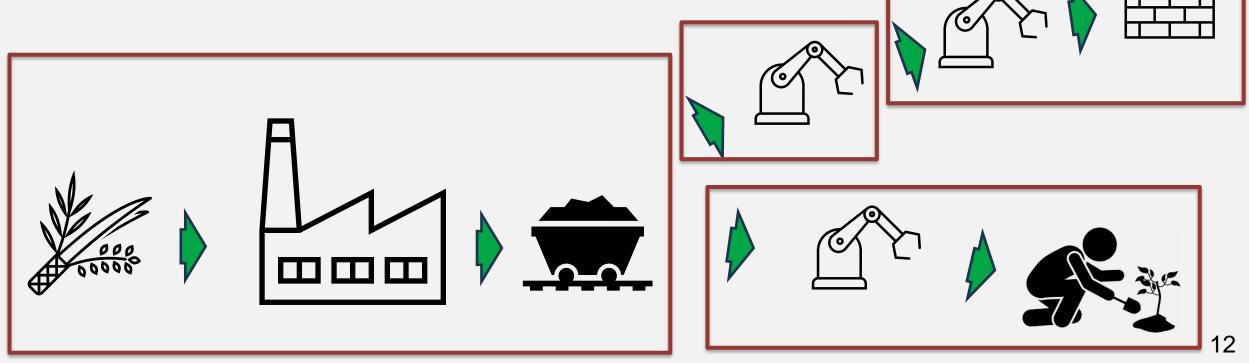
C-Sink Certification process Link to Flowchart

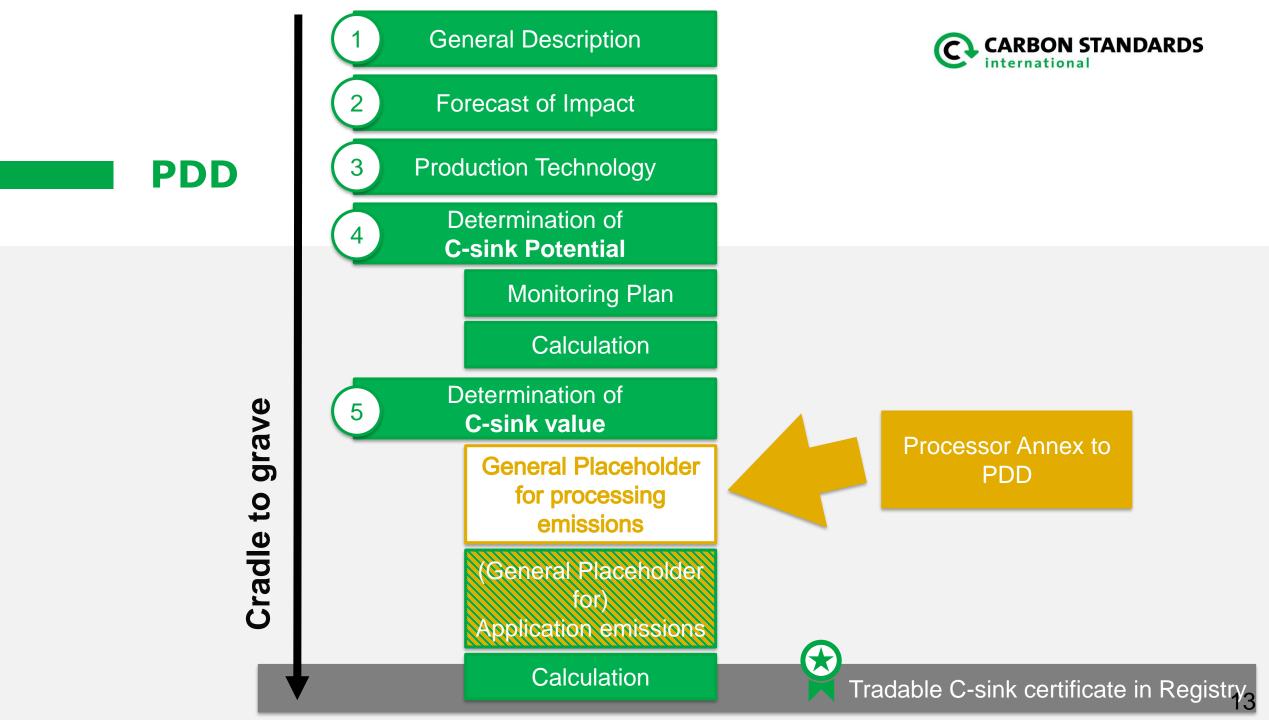


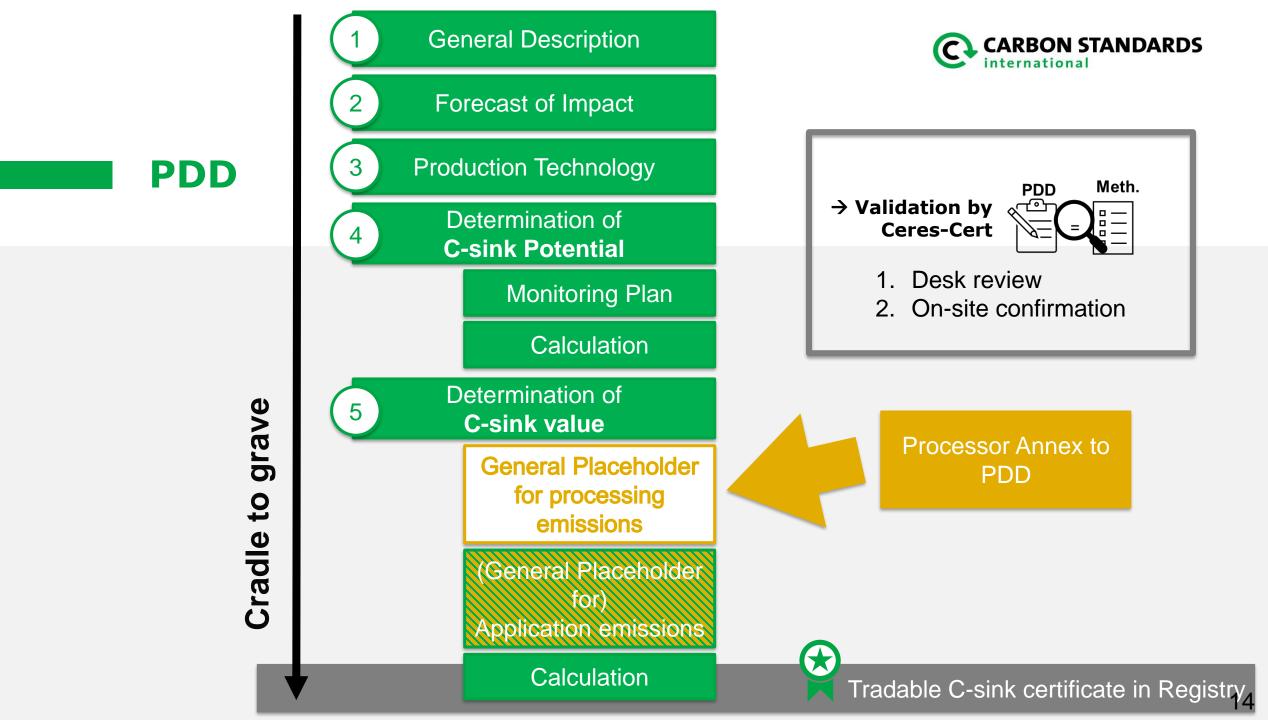
10

Project documentation

→ Project Design Document template

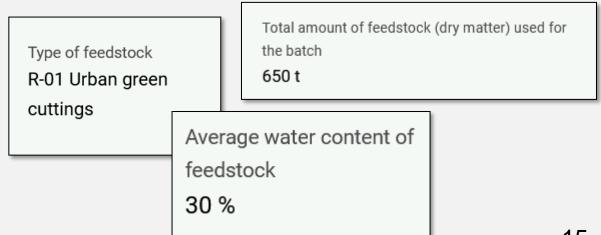

→ Verification by Ceres-Cert



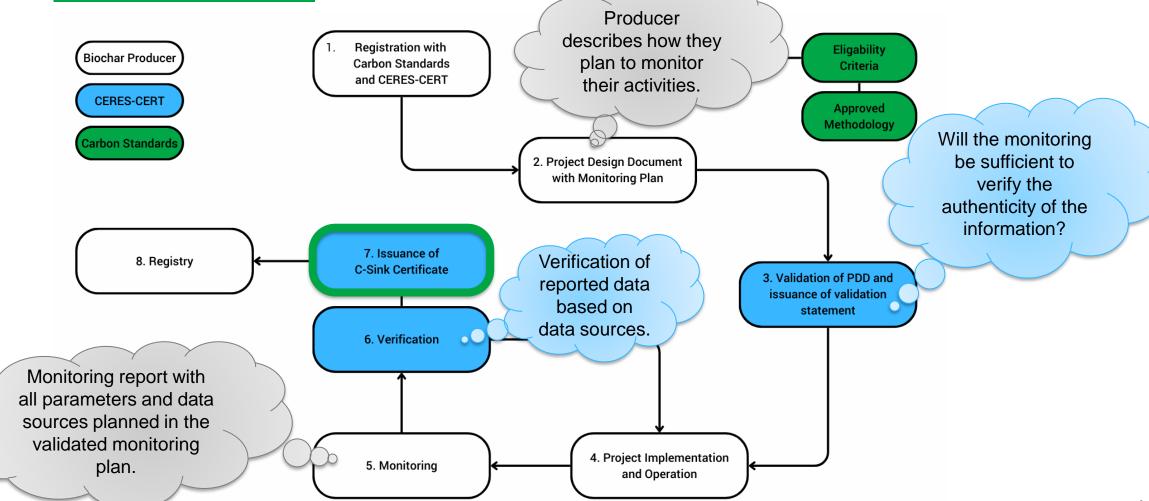


Project Documentation

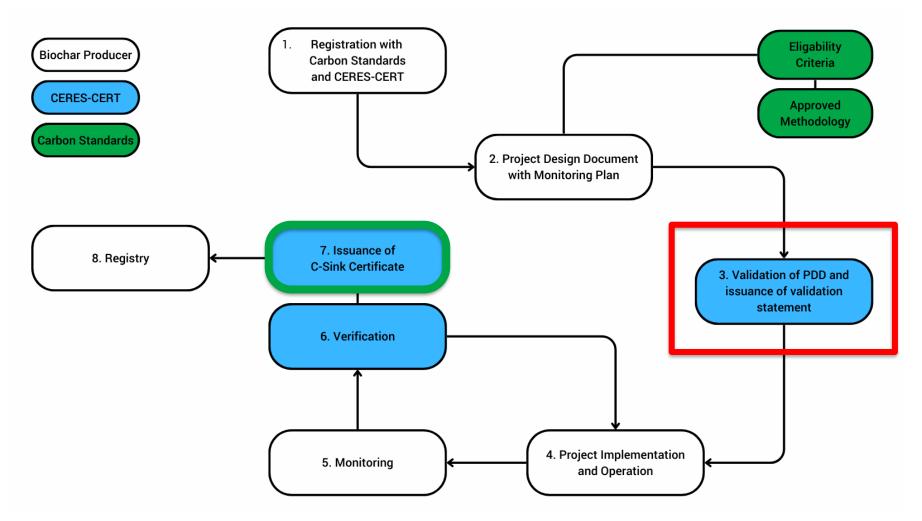
 Every entity is responsible for their part to the PDD, reporting of the own emissions and the correct transfer of all information to the dMRV system.



Monitoring Plan


- The **monitoring plan** outlines future monitoring.
- The parameters are specified in the template according to the standard and represent an analogy of the fields from the biochar tool.
- Producers specify how often they plan to specify a value (monitoring frequency; often: per batch) and based on which data source the data is determined.

Parameter	Monitoring frequency	Source of data
Type of feedstock (with ID of	continuous	purchase receipts and EBC
EBC positive list)		positive list
Average water content of	per batch	documentation of frequent
feedstock at delivery		measurements
Amount of feedstock (DM)	per batch	production protocols and
processed for the last batch		operation recordings



Monitoring in C-Sink Certification process

C-Sink Certification process Link to Flowchart

18

Validation: Final step during Initial Onsite Inspection (1st year)

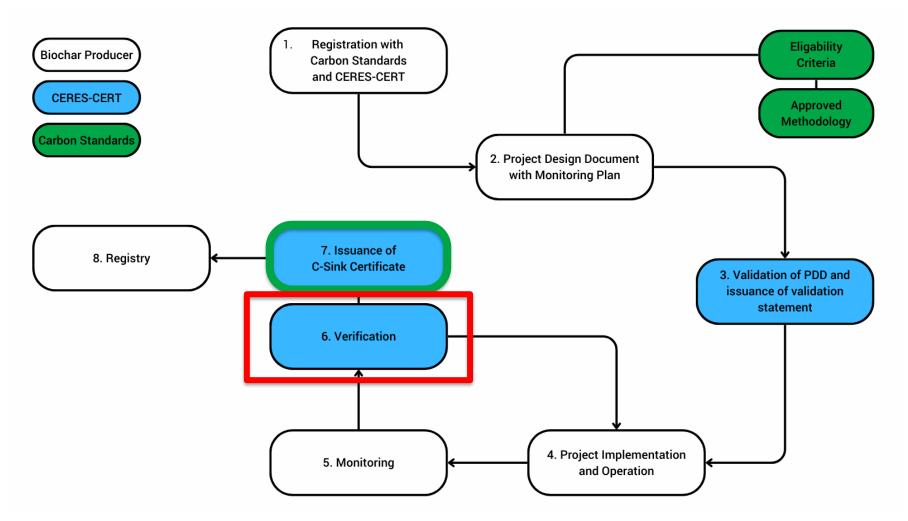

- 1. Descriptive part of PDD is compared after desk review with real conditions on site (chapters 1+3)
- 2. N/A parameters in the monitoring plan (chapter 4.2) are checked and confirmed if they`re really not relevant

Table of content

Project Design Document					
1. Purj	pose and general description of project				
1.1.	Project location				
1.2.	Description of baseline scenario				
1.3.	Biochar carbon sinks				
1.4.	Project Boundary7				
1.5.	Eligibility				
1.6.	Ownership				
1.7.	Additionality8				
	Assessment of regulatory requirements for biochar production and application as a removal blogy				
1.7.2.	Additional Carbon Removal8				
1.7.3.	Biomass Feedstock Additionality8				
2. Ex-a	nte estimate of impact9				
3. Tecl	nnology and business cases				
3.1.	Production unit				
3.2.	Feedstock				
3.3.	Leakage by activity shifts outside the project boundaries				
3.4.	Distribution channels of biochar				
3.5.	Planned business development				

C-Sink Certification process Link to Flowchart

Verification

Sources of data for all parameters in monitoring plan are checked (PDD chapter 4.1.)

Initial Onsite Inspection (1st year):

- data for the period since completion of TPA or batch start date until audit
- best practice: approx. 2 months

Annual Onsite-Inspection (2nd year onward):

 data for the period from last audited end month to full previous month from audit

4.1.2.2. Pyrolysis

For pyrolysis the following parameters will be monitored:

Parameter	Monitoring frequency	Source of data
Electricity consumption of pyrolyser for the entire batch (in kWh)	per batch	electricity bills + internal calculation
Source of electric energy for the pyrolysis plant	per batch	Cambodian National Grid
CO₂eq footprint of electricity used for the pyrolysis plant in g CO₂eq/kWh	per batch	IFI Dataset of Default Grid Factors - 2021
Energy source to preheat the pyrolysis reactor	per batch	Internal record of Diesel use
Amount of fuel which is used to preheat the pyrolysis reactor in t per batch	per batch	Operation recordings
CO₂eq of fuel used for the pyrolysis plant per t	per batch	Operation recordings

Initial Onsite Inspection (1st year):

- The Inspector extrapolates the data from a few months to the entire year and compares to the given values from the Biochar Tool
- If the annual extrapolation deviates by more than 10 % from the value in the Biochar Tool:
 - Producer must correct the value in the Biochar tool
 - Exception: comprehensible explanation (e.g. seasonal fluctuation)

Annual Onsite-Inspection (2nd year onward)

- The data for the period from last audited end month to full previous month from audit is verified by the inspector
- The correct data must be entered into the emission portfolio
- There is no correction of C-Sink-Potential certificate; the emission portfolio must be offset before the final certification

Process:

- Public Project Documentation (p.56, point 14)
- Cradle to grave emission documentation (p.48, 10)
 - Application matrix positive list
 - Explicit mentioning of processor registration (p.49, 10.2)
- Energy Efficiency limit (p.42, 8.2)
- Report Carbon Efficiency (p.42, 8.1)

Application Matrix Positive List

https://www.carbon-standards.com/docs/transfer/4000078EN.pdf

Positive list of permissible matrices for the establishment of biochar C-sinks

Global Biochar C-Sink

For biochars presenting an H to Corg ratio below 0.40. A new persistence evaluation system based on hydro-pryrolysis analysis is in preparation. The latter mainly concerns the proportions of the PAC and SPC fractions.

Matrix									
Origin	Matrix	ID	Controlling period in years	Diffuse C-sink authorized	Leakage margin to be deduced before registration	C remaining during temporary C-sink	C remaining after > 1000 y	SPC* fraction with MRT of 50 years	Conditiona
	Compost	B-01		~			76%	25%	The use of composit as soil amendment must be proven. When used I produce potting soil, it has to be declared as matrix B-09.
	Solid Manure	B-02		~			75%	25%	The use as soil amendment must be proven. It must not be pyrolysed combusted. If the manure is treated by anaerobic digestion, non combustive use of the solid digestiste must be guestinited.
	Liquid Manure	B-03		~			76%	25%	If the manure is treated by anaerobic digestion, non combustive use the solid digestate must be guaranteed.
Biological Matrix - Only for diffuse C-sinks. For	Anaerobic Digestate	B-04		~			76%	25%	The use as soil amendment must be proven, must not used as feedstock for pyrolysis
all packaging units > 0.5 m3 blochar, the blochar and its C-anit matter must be tracked to the location of soil application.	Biochar Based Fertilizer	B-06		~			75%	25%	The fertilizer does not reduce the permenance but blochar may increase emissions during menufacturing and stonege. A GHG balance of the production must be provided.
	Animai feed	B-07		~			75%	25%	Only lifestock feed with guaranteed end-of-life as soil amendment. Horse and chicken manure are often used for energetic purposes. Tracking or reporting of manure to soil must be provided. Pet feed products are generally excluded as pet execrets and up mainly in va treatment planta.
	Seed coating	B-08		~	10%		76%	25%	An accounting for waste seed management must be provided and deduced from C-sink. 10% margin because expired seeds are often combusted.
	Polling soil / growing media / substrates for horticulture	8-09		~	< 20%		75%	25%	Life cycle data and statilistics must prove that the end of life is in sol (e.g., via composiing) for a relevant share of the total volume produce This share defines the security margin.
	Concrete	Min-01				100%			
	Coment mortar	Min-02		~		100%			After biochar addition, these matrixes must not be subject to thermal treatment beyond drying. Following demoition, the biochar-containing mineral matrix should be recycled for use in new building materials or
	Lime modar & gypsum	Min-03	o years	1		100%			gravel for road construction or lanacaping to preserve the matrix. In the case of Global Material C-sink certified constructions, demoition must be communicated to the Global C-Sink Benistry so that the maktered

Processor- and Trader registration

Chapter 10 makes explicit what has always been the case: processors and traders must be registered.

- A company that makes new biochar-based products from more than 10t biochar per year, must be EBC or WBC certified.
- Traders that trade C-sink units containing > 1 t CO2e must be registered

Process:

- Public Project Documentation (p.56, point 14)
- Cradle to grave emission documentation (p.48, 10)
 - o Application matrix positive list
 - o Explicit mentioning of processor registration (p.49, 10.2)
- Energy Efficiency limit (p.42, 8.2)
- Report Carbon Efficiency (p.42, 8.1)

Energy efficiency must be at least 60%:

"For every batch of a certified pyrolysis unit, at least 60% of the sum of the energy contained in the biomass and all energy expenditures of the process must be used. Exemptions are possible on request to CSI."

$$E_{eff} = \frac{E_{solid} + E_{thermal} + E_{drying} + E_{electric}}{E_{feedstock} + E_{expenditures}}$$

Energy Efficiency

Exemptions:

... can be granted for up to 2 years if some of the following points are fulfilled and proven:

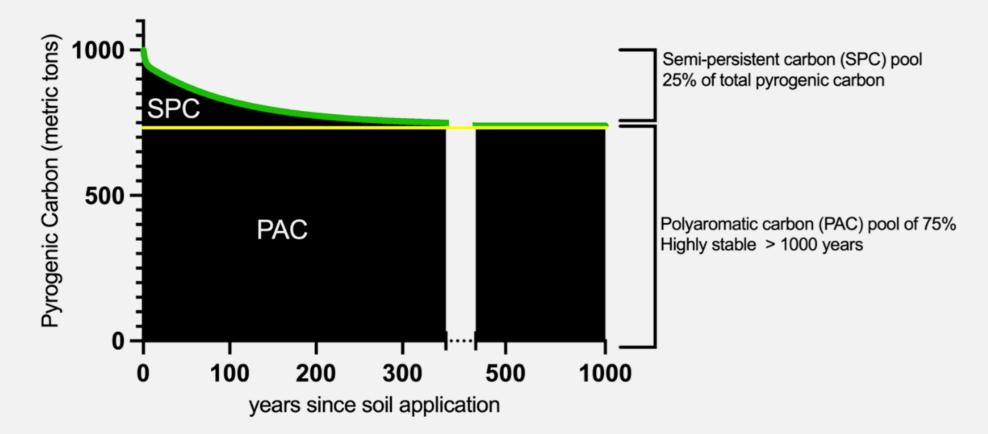
- Pilot plant
- development of an unused biomass potential for which another, more energyefficient use is not foreseeable. This can be seen, for example, in
- a technical idea for increasing energy efficiency must be planned, preferably creative

Carbon efficiency

Σ (carbon content of products)

carbon content of feedstock

Biochar:30-60%Biochar and pyrolysis oil:approx. 80%Biochar, pyrolysis oil and CO2:>80%



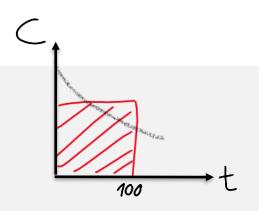
Product:

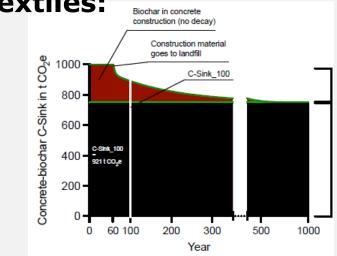
- Product definition (<u>p. 11, 2 & p.53, 12</u>)
 - Geological C-sink, 1000+ years: C-Sink_1000+
 - Temporary C-sink, up to 100 years: C-Sink_xx
- Threshold value for diffuse C-sinks: 1tCO2e (p.51, 11.2)
- Emission portfolios (ctrl-f portfolio)
- Methane offset with temporary C-sinks (p.20, 4.3)
- Definition for allocation/pro-rata accounting (p.22, 4.5)

Geological C-Sink, C-Sink_1000+ Soil application of biochar with H/Corg < 0,4

Temporary C-Sinks, C-Sink_xx

Biochars with $H/C_{org} > 0,4$ applied to soil:


- Only SPC fraction is present and completely degraded
- C-sink value from integral


Biochar applied to materials as thermoplastics or textiles:

 100% of the biochar carbon counted as C-Sink over the average lifetime of the product

Biochar applied to building materials:

- 100% of the biochar carbon for lifetime of the building
- Soil degradation curve afterwards
- Ownership and location is required

Product:

- Product definition (p. 11, 2 & p.53, 12)
 o Geological C-sink, 1000+ years: C-Sink_1000+
 - Temporary C-sink, up to 100 years: C-Sink_xx
- Threshold value for diffuse C-sinks: 1tCO2e (p.51, 11.2)
- Emission portfolios (ctrl-f portfolio)
- Methane offset with temporary C-sinks (p.20, 4.3)
- Definition for allocation/pro-rata accounting (p.22, 4.5)

Geo-localized vs. diffuse C-sinks

Geo-localized:

Chapter 11.1: *"When biochar is applied to soil, the carbon sink must be registered with at least one GPS point situated within the land where the biochar is applied."*

 \rightarrow Tracking and detailed labeling required until the final destination in soil

Geo-localized vs. diffuse C-sinks

Diffuse:

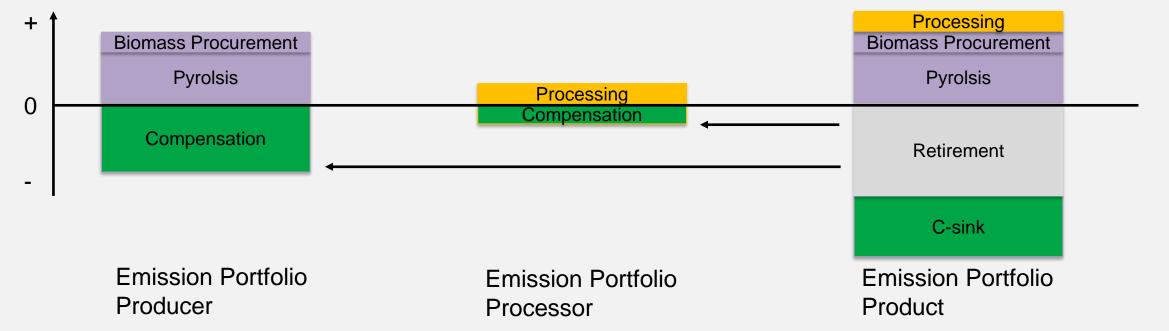
Chapter 11.2: *"C-sink materials and packaging units containing biochar or biochar-based products representing less than 1 tCO2e of biochar [...] may be registered as diffuse C-sinks"*

 \rightarrow Tracking and detailed labeling required until mixing into C-sink matrix.

Product:

- Product definition (p. 11, 2 & p.53, 12)
 - o Geological C-sink, 1000+ years: C-Sink_1000+
 - Temporary C-sink, up to 100 years: C-Sink_xx
- Threshold value for diffuse C-sinks: 1tCO2e (p.51, 11.2)
- Emission portfolios (<u>ctrl-f portfolio</u>)
- Methane offset with temporary C-sinks (p.20, 4.3)
- Definition for allocation/pro-rata accounting (p.22, 4.5)

Emission Portfolios

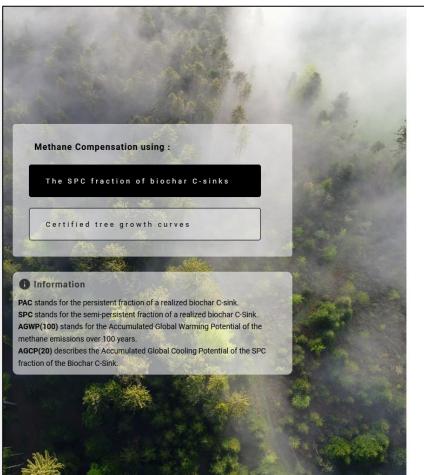

Emission portfolios with all emissions that match an observation - e.g. all emissions from the manufacturer, or all emissions that occurred in connection with a bag of biochar.

+ 1	Biomass Procurement		Processing Biomass Procurement
	Pyrolsis	Processing	Pyrolsis
0 -			C-sink
	Emission Portfolio Producer	Emission Portfolio Processor	Emission Portfolio Product

Emission Portfolios

Emission portfolios with all emissions that match an observation - e.g. all emissions from the manufacturer, or all emissions that occurred in connection with a bag of biochar.

Producer: Methane emissions <u>Methane Calculator</u>



- Methane has a mean residency time of 12 years and is degraded to CO2 in the atmosphere.
- When degraded to CO2 it can be considered carbon neutral if originated from sustainable feedstock.
- Effect of methane must be offset.
- Global warming effect of methane over 100 years must be offset with an equivalent sized temporary sink within 20 years after initial emission.

Methane Calculator Demonstration Methane Calculator

Methane compensation by biochar C-sinks using the SPC fraction

Calculate how much of the semi-persistent fraction of a realized and validated biochar C-Sink is needed to compensate for methane emissions.

Methane emissions in t CH4

0.51

Biochar

Amount of Biochar in t (DM) (!)

10

C-content of biochar (%) ①

80

H/Corg ()

0.4

CALCULATE

647.7

AGWP(100) of CH4 in t CO2e :

To be eligible to use the pro-rata GHG calculation, the producer must prove that the non-biochar products are regularly traded and generate >70% of the income or added value.

The emission allocation must be based on energy content of all products.

